
Cryo-electron Microscopy Imaging of Alzheimer's Amyloid-beta 42 Oligomer Displayed on a Functionally and Structurally Relevant Scaffold

Jinming Wu¹, Thorsten B Blum¹, Daniel P Farrell^{2, 3}, Frank DiMaio^{2, 3}, Jan Pieter Abrahams^{1, 4}, Jinghui Luo¹

¹ Department of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland, ² Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA, ³ Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA, ⁴ Biozentrum, University of Basel, 4058, Basel, Switzerland.

Email of main speaker: Jinming.wu@psi.ch

Amyloid- β peptide (A β) oligomers are pathogenic species of amyloid aggregates in Alzheimer's disease. Like certain protein toxins, A β oligomers permeabilize cellular membranes, presumably through a pore formation mechanism. Owing to their structural and stoichiometric heterogeneity, the structure of these pores remains to be characterized. We studied a functional A β 42-pore equivalent, created by fusing A β 42 to the oligomerizing, soluble domain of the α -hemolysin (α HL) toxin. Our data reveal A β 42- α HL oligomers to share major structural, functional, and biological properties with wild-type A β 42-pores. Single-particle cryo-EM analysis of A β 42- α HL oligomers (with an overall 3.3 Å resolution) reveals the A β 42-pore region to be intrinsically flexible. The A β 42- α HL oligomers will allow many of the features of the wild-type amyloid oligomers to be studied that cannot be otherwise, and may be a highly specific antigen for the development of immuno-base diagnostics and therapies.

